martes, 24 de abril de 2007

Gregor Mendel



Gregor Johann Mendel (20 de julio de 1822[1]6 de enero de 1884) fue un monje y naturalista, nacido en Heizendorf, Austria (actual Hynčice, distrito Nový Jičín, República Checa), que describió las leyes que rigen la herencia genética, por medio de los trabajos que llevó a cabo con diferentes variedades de la planta del guisante (Pisum sativum). Su trabajo no fue valorado cuando lo publicó en el año 1866. Hugo de Vries, botánico holandés, junto a Carl Correns y Erich von Tschermak, redescubrieron las leyes de Mendel por separado en el año 1900.
Nacido en un pueblo llamado Heizendorf, hoy
Hynoice, en el norte de Moravia (República Checa), fue bautizado con el nombre de Johann Mendel. Toma el nombre de padre Gregorio al ingresar como fraile agustino por necesidad, debido a que su padre tuvo dificultades para mantener sus estudios.

Mendel presenta sus trabajos en las reuniones de la Sociedad de Historia Natural de Brünn (Brno), el
8 de febrero y el 8 de marzo de 1865, publicándolos posteriormente como Experimentos sobre híbridos de plantas (Versuche über Planzenhybriden) en 1866 las actas de la Sociedad. Como es conocido, sus resultados fueron ignorados por completo (tuvieron que transcurrir más de treinta años para que fueran reconocidos y entendidos).
Al tipificar las características fenotípicas (apariencia externa) de los guisantes las llamó «caracteres». Usó el nombre de «elemento», para referirse a las entidades hereditarias separadas. Su mérito radica en darse cuenta de que sus experimentos (variedades de guisantes) siempre ocurrían en variantes con proporciones numéricas simples.

Primera Ley de Mendel

Primera ley, o ley de uniformidad: El tipo hereditario de la prole no es intermedio entre los tipos de los padres, sino que en él predomina el de uno u otro. Si se cruzan dos variedades bien definidas de una misma especie, el descendiente híbrido mostrará las características distintivas de uno de los progenitores (característica dominante).

Segunda Ley de Mendel



Segunda ley, o de segregación independiente: La característica del otro progenitor (característica recesiva) es latente y se manifestará en la siguiente generación resultante de cruzar a los híbridos entre sí. Tres cuartos muestran la característica dominante y un cuarto la característica recesiva.

Tercera ley de Mendel





Tercera ley, o ley de la combinación de los genes (transmisión independiente de los genes): Cada una de las características puras de cada variedad (color, rugosidad de la piel, etc.) se transmiten a la siguiente generación de forma independiente entre sí, siguiendo las dos primeras leyes.

Experimentos de Mendel

Mendel inició sus experimentos eligiendo dos plantas de guisantes que diferían en un carácter, cruzó una variedad de planta que producía semillas amarillas con otra que producía semillas verdes, estas plantas forman la Generación Parental (P).
Como resultado de este cruce salieron plantas que producían nada más que semillas amarillas, repitió los cruces con otras plantas de guisante que diferían en otros caracteres y el resultado era el mismo, salía un carácter de los dos en la generación filial. Al carácter que aparecía le llamo Dominante y al que no, Recesivo. En este caso el color amarillo es dominante frente al color verde.
Las plantas obtenidas de la Generación Parental se denominan Primera Generación Filial (F1).

Mendel dejó que se autofecundaran las plantas de la Primera Generación Filial y obtuvo la Segunda Generación Filial (F2) compuesta por plantas que producían semillas amarillas y plantas que producían semillas verdes en una proporción 3:1 (3 de semillas amarillas y 1 de semillas verdees repitió el experimento con otros caracteres diferenciados y obtuvo resultados similares en una proporción 3:1.
De esta experiencia saco la Primera y Segunda ley
Más adelante Mendel decidió comprobar si estas leyes funcionaban en plantas diferenciadas en dos o más caracteres, eligió como Generación Parental plantas de semillas amarillas y lisas y plantas de semillas verdes y rugosas.

Obtuvo la Segunda Generación Filial autofecundando la Primera Generación Filial y obtuvo semillas de todos los estilos posibles, plantas que producían semillas amarillas y lisas, amarillas y rugosas, verdes y lisas y verdes y rugosas, las contó y probó con otras variedades y siempre salían en una proporción 9:3:3:1 (9 plantas de semillas amarillas y lisas, 3 de semillas amarillas y rugosas, 3 de semillas verdes y lisas y una planta de semillas verdes y rugosas).
De esta experiencia sacó la Tercera Ley de MendelMendel y la
apicultura Un aspecto no muy revelado de la vida de Mendel es que se dedicó durante los últimos 10 años de su vida a las abejas. Mendel reconoce que las abejas resultó un modelo de investigación frustrante. Es probable que el experimento realizado con abejas fuera guiado para confirmar la teoría de la herencia.

Aportes de Gregor Mendel a la Ciencia

Los experimentos de Mendel han resistido la prueba de incontables repeticiones con todas las especies de organismos vivientes que se reproducen por función de dos células sexuales. Todos, desde el hombre hasta el ratón muestran caracteres dominantes y recesivos, y la manifestación de estos siguen generalmente las leyes de Mendel. Durante los 100 años que siguieron a la publicación de Mendel, hemos descubierto lentamente los mecanismos moleculares que infaliblemente realizan la transmisión de los caracteres hereditarios a la descendencia.
La sustancia hipotética a la cual Mendel intuitivamente adscribió la capacidad de representar un carácter hereditario (el "elemento formador" o "factor") fue aislado, sin saberlo, por un contemporáneo de Mendel: Federico Mishear. Por ello, "Todo ser engendra otros semejantes", es el axioma que ha formado parte del caudal de los conocimientos humanos desde tiempo inmemorial.

Clonaciòn

Un clon es un ser vivo cuyos genes son idénticos a los de otro. En 1997, científicos escoceses trabajaron en el instituto Roslin, de Edimburgo, bajo la dirección del doctor Lan Wilmut, logrando por primera vez crear mediante la clonación un ser vivo: la oveja Dolly. Para ello el equipo de hombres hizo lo siguiente:
@ Tomaron una célula de ubre de una oveja donadora.

@ Tomaron un huevo (ovario) sin fertilizar de otra oveja.

@ Remueven del ovario el DNA (material genético), el cual entonces es fusionado con la célula de ubre. La célula fusionada se convierte en un embrión.

@ Plantaron el embrión en una “madre sustituta” y creció hasta convertirse en una oveja.
La oveja resultante es genéticamente idéntica a la oveja donadora.

Gametos,Òvulos y Espermatozoides

Antón Van Lewenhuk observó por primera vez los espermatozoides. En 1672 el holandés Reigner Graaf descubrió los óvulos. En 1674 surge la teoría del preformismo que indicaba que el embrión ya estaba formado y esto necesitaba crecer.
Gametos: en Biología, los gametos (del griego Gameto, cónyuge) son cada una de las células sexuales masculina y femenina que al unirse en la fecundación forman el cigoto de las plantas y de los animales.

Óvulos: los óvulos son las células más voluminosas del cuerpo humano, formadas por meiosis en los ovarios, en un proceso periódico también llamado ovulación.
En las plantas se llama óvulos a los primordios seminales, que son megasporangios (órganos productores de esporas femeninas), mientras que los gametos femeninos (células sexuales femeninas) reciben el nombre de oosferas.

Espermatozoides: es la células germinales masculinas maduras originadas en los testículos.

Cromosomas

Los cromosomas son la base o soporte físico de los genes. Cada gen esta asociado a un cromosoma y, por eso, se desplazara de un lugar a otro con el cromosoma.

Esto tiene especial importancia cuando se reproduce una célula para crear una célula sexual (meiosis): se separan los cromosomas homólogos para formar una célula con la mitad de material genético. Para llevar a cabo este proceso hace falta reconocer los cromosomas homólogos y llevar uno a cada lado aleatoriamente. Esto se consigue mediante reconocimiento en el centromero de cada cromosoma (el centromero es el punto donde se une la X).

Si no existiese la organización en cromosomas no podríamos reproducirnos sexualmente, ni en realidad habría organismos complejos, porque el hecho que tengamos varios cromosomas nos permite tener mas material genético útil y organizarlo mejor.
Los tipos de cromosoma vienen dados según la posición del centromero:* Metacéntricos: el centrómero se localiza a mitad del cromosoma y los dos brazos presentan igual longitud.* Submetacéntricos: la longitud de un brazo del cromosoma es algo mayor que la del otro.* Acrocéntrico: un brazo es muy corto (p) y el otro largo (q).* Telocéntrico: sólo se aprecia un brazo del cromosoma al estar el centrómero en el extremo.

Beneficios de la aplicaciòn de genètica

La hibridación consiste en la fecundación entre dos individuos de distintos géneros o especies. Para realizar la hibridación en las plantas se eliminan los estambres de la flor destinada a producción de semillas y se deposita en su estigma el polen de la planta seleccionada para el cruce.
La genética aplicada es la rama de la genética que investiga los procedimientos y técnicas adecuadas para el mejoramiento, adaptación y selección de las especies biológicas. Gracias a ella se obtiene cada vez mayor cantidad de razas y variedades agrícolas y ganaderas, lo que repercute en el mejor rendimiento alimentario, mayor valor económicp y resistencia a los parásitos y otras enfermedades
.

Proceso de Inseminaciòn

Inseminación artificial es la técnica empleada en animales para conseguir mejores razas, que consiste en transferir espermatozoides del macho a los órganos sexuales de la hembra. El semen de animales de calidad superior (sementales) se colecta, se congela y posteriormente se inyecta artificialmente en el aparato reproductor de la hembra en el momento oportuno.
La inseminación artificial es otra de las aplicaciones de ingeniería genética que ayuda al mejoramiento de especies animales.

Fecundación in Vitro.
Se toma un óvulo de la mujer, se fecunda y se coloca en el útero de la mujer.